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Aggregation and Transformation of Vector-Valued
Messages in the Shuffle Model

of Differential Privacy
Mary Scott , Graduate Student Member, IEEE, Graham Cormode , and Carsten Maple , Member, IEEE

Abstract— Advances in communications, storage and compu-
tational technology allow significant quantities of data to be
collected and processed by distributed devices. Combining the
information from these endpoints can realize significant societal
benefit but presents challenges in protecting the privacy of indi-
viduals, especially important in an increasingly regulated world.
Differential privacy (DP) is a technique that provides a rigorous
and provable privacy guarantee for aggregation and release. The
Shuffle Model for DP has been introduced to overcome challenges
regarding the accuracy of local-DP algorithms and the privacy
risks of central-DP. In this work we introduce a new protocol
for vector aggregation in the context of the Shuffle Model. The
aim of this paper is twofold; first, we provide a single message
protocol for the summation of real vectors in the Shuffle Model,
using advanced composition results. Secondly, we provide an
improvement on the bound on the error achieved through using
this protocol through the implementation of a Discrete Fourier
Transform, thereby minimizing the initial error at the expense of
the loss in accuracy through the transformation itself. This work
will further the exploration of more sophisticated structures such
as matrices and higher-dimensional tensors in this context, both
of which are reliant on the functionality of the vector case.

Index Terms— Differential privacy (DP), single-message shuffle
model, local randomizer, randomized response, mean squared
error (MSE), discrete Fourier transform (DFT).

I. INTRODUCTION

THE benefit of processing data from distributed sources
is being realized in a range of applications in areas

including medical diagnoses and treatment, transportation,
agile manufacturing, utilities management and entertainment
services. The rapid adoption of Internet of Things (IoT)
systems that leverage recent advances in information collec-
tion, processing, communication and analysis, has played a
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significant role in realizing these benefits. However, much
of the information collected in IoT systems can, directly or
indirectly, reveal personal information of the parties involved.
Such privacy concerns are gaining importance and concern in
an increasingly regulated space. Differential Privacy (DP) [2]
has emerged as the leading candidate to provide privacy pro-
tection in the mining and release of private data. DP provides
a strong, mathematical definition of privacy that guarantees
a measurable level of confidentiality for any data subject
in the dataset to which it is applied. In this way, useful
collective information can be learned about a population,
whilst simultaneously protecting the personal information of
each data subject.

In particular, DP guarantees that the impact on any par-
ticular individual as a result of analysis on a dataset is the
same, whether or not the individual is included in the dataset.
This guarantee is quantified by a parameter ε, which reflects
strong privacy in cases where it is small. However, finding an
algorithm that achieves DP often requires a trade-off between
privacy and accuracy: a smaller ε sacrifices accuracy for better
privacy, and vice versa. DP enables data analyses such as the
statistical analysis of the salaries of a population. This allows
useful collective information to be studied, so long as ε is
adjusted appropriately to satisfy the definition of DP.

In this work we focus on protocols in the Single-Message
Shuffle Model [3], a one-time data collection model where
each of n users is permitted to submit a single message. How-
ever, this constraint of applying to single messages restricts
the applicability of the model. We address this by applying
the Single-Message Shuffle Model to the problem of vector
aggregation. This is a valuable contribution since there are an
increasing number of use cases, including Federated Learning,
that utilize vector aggregation.

There are many practical applications of the Single-Message
Shuffle Model in this federated setting, where multiple users
collaboratively solve a Machine Learning problem, the results
of which simultaneously improves the model for the next
round [4]. The updates generated by the users after each round
are high-dimensional vectors, so this data type will prove
useful in applications such as training a Deep Neural Network
to predict the next word that a user types [5]. It is feasible to
implement our shuffle-based protocol within the framework of
Secure Aggregation, which would remove the requirement for
an explicit entity to perform the shuffle [6].
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Our first contribution is a new protocol in the
Single-Message Shuffle Model for the private summation of
vector-valued messages, extending an existing result from
Balle et al. [3] by permitting the n users to each submit
a vector of real numbers rather than being restricted to
submitting a scalar. The resulting estimator is unbiased and
has normalized mean squared error (MSE) Oε,δ(d8/3n−5/3),
where d is the dimension of each vector. Our second
contribution, which we call the Fourier Summation Algorithm
(FSA), combines the private summation protocol with the
Discrete Fourier Transform (DFT) from Rastogi and Nath
in the centralized case [7], to improve the accuracy of the
tight bound to Oε,δ(m8/3n−5/3), where m represents the
number of Fourier coefficients retained. Since m � d , this
is a considerable improvement on the previous estimator,
though some accuracy is lost through the transformation of
the messages between the original and Fourier domains.

Compared to prior work on scalar aggregation (sum), our
work requires several innovations. It begins with the same
generalization of randomized response to encode each real
input value into a discrete histogram as has been used in
several prior works. However, we then have to argue how to
combine the results from multiple vector coordinates to rebuild
a representation of the aggregate input. Naively, it might
seem that we have to divide the ‘privacy budget’ (�) into
d pieces to process a d-dimensional histogram. However,
our analysis shows that this can be improved so that we
sample t out of d locations in the vector, where the privacy
cost only scales proportional to

√
t; moreover, we show that

analytically and empirically it is best to set t as small as
possible, i.e., to sample t = 1 coordinates from each client.
We introduce the idea of combining the Fourier transfor-
mation with privacy in the shuffle model, and demonstrate
that it is possible to improve the accuracy/communication
trade-off, by sampling from a reduced selection of Fourier
coefficients. It is not meaningful to apply such a transformation
in the scalar case, and so the approach is new to the vector
setting.

It is possible for these vector summation protocols to be
extended to produce a similar protocol for the linearization
of matrices. To do this, it must be recognized that matrix
decomposition or reduction is required to ensure that the
constituent vectors are linearly independent. Given that we fix
the dimension of each matrix, it is important to ensure that all
constituent vectors are linearly independent, as this guarantees
a unique solution for each matrix. Our method for matrices
can be further extended to higher-dimensional tensors, which
are useful for the representation of multi-dimensional data in
Neural Networks.

II. RELATED WORK

The earliest attempts at protecting the privacy of users in a
dataset focused on simple ways of suppressing or generalizing
the data. Examples include k-anonymity [8], l-diversity [9] and
t-closeness [10]. However, such attempts have been shown to
be insufficient, as proved by numerous examples [11].

This harmful leakage of sensitive information can be pre-
vented through the application of DP, since the method

mathematically guarantees that the chance of a linkage attack
on an individual in the dataset is almost identical to that on
an individual not in the dataset.

Since DP was first conceptualized in 2006 by
Dwork et al. [2], the majority of research in the field
has focused on two contrasting models. In the Centralized
Model, users submit their sensitive personal information
directly to a trusted central data collector, who adds random
noise to the raw data to provide DP, before assembling and
analyzing the aggregated results.

In the Local Model, DP is guaranteed when each user
applies a local randomizer to add random noise to their data
before it is submitted. The Local Model differs from the
Centralized Model in that the central entity does not see the
users’ raw data at any point, and therefore does not have
to be trusted. However, the level of noise required per user
for the same privacy guarantee is much higher, limiting the
efficacy of Local Differential Privacy (LDP) unless used in
very large populations. For this reason, the application of LDP
is largely the domain of major companies such as Google [12],
Apple [13] and Microsoft [14].

Neither of the two models can provide a good balance
between the trust of the central entity and the level of noise
required to guarantee DP. Hence, in recent years researchers
have tried to create intermediate models that reap the benefits
of both.

In 2017, Bittau et al. [15] introduced the Encode, Shuffle,
Analyze (ESA) model, which provides a general framework
for the addition of a shuffling step in a private protocol. After
the data from each user is encoded, it is randomly permuted to
unbind each user from their data before analysis takes place.
In 2019, Cheu et al. [16] formalized the Shuffle Model as
a special case of the ESA model; their model connects this
additional shuffling step to the Local Model. In the Shuffle
Model, the local randomizer applies a randomized mechanism
on a per-element basis, potentially replacing a truthful value
with another randomly selected domain element. The role of
these independent reports is to create what is known as a
privacy blanket, which masks the outputs which are reported
truthfully.

As well as the result on the private summation of
scalar-valued messages in the Single-Message Shuffle Model
that we will be using [3], Balle et al. have published two
more recent works that solve related problems. The first
paper [17] improved the distributed n-party summation proto-
col from Ishai et al. [18] in the context of the Single-Message
Shuffle Model to require O(1 + π/ log n) scalar-valued mes-
sages, instead of a logarithmic dependency of O(log n + π),
to achieve statistical security 2−π . The second paper [19]
introduced two new protocols for the private summation of
scalar-valued messages in the Multi-Message Shuffle Model,
an extension of the Single-Message Shuffle Model that permits
each of the n users to submit more than one message, using
several independent shufflers to securely compute the sum.
In this work, Balle et al. contributed a recursive construction
based on the protocol described in [3], as well as an alternative
mechanism which implements a discretized distributed noise
addition technique using the result from Ishai et al. [18].
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A relevant concurrent work to our first contribution is the
work of Girgis et al. [20], which uses the Single-Message
Shuffle Model directly in the Federated Learning framework.
This contrasts with the link of our contribution to Federated
Learning as a use case of vector aggregation. A recent paper
by Feldman et al. [21] extends the ‘amplification by shuffling’
problem: the remaining result of Balle et al. [3] that is outside
the scope of our work.

Also relevant to our research is the work of Ghazi et al. [22],
which explored the related problems of private frequency esti-
mation and selection in a similar context, drawing comparisons
between the errors achieved in the Single-Message Shuffle
Model and the Multi-Message Shuffle Model. A similar team
of authors produced a follow-up paper [23] describing a more
efficient protocol for private summation in the Single-Message
Shuffle Model, using the ‘invisibility cloak’ technique to
facilitate the addition of zero-sum noise without coordination
between the users. The most recent work of Ghazi et al. [24]
relaxes the single-message requirement of their previous pro-
tocols to improve the accuracy of private summation in the
Shuffle Model to be close to that of the Centralized Model.

Several related works have provided inspiration for our
design employing the Discrete Fourier Transform (DFT) for
private summation in the Single-Message Shuffle Model. Ras-
togi and Nath [7] introduced the idea of using a Fourier
transform in the central privacy model in order to reduce the
aggregate amount of privacy noise added; here, our contribu-
tion is to show a corresponding result in the shuffle model.
Selesnick et al. [25] describe numerous symmetric extensions
to the DFT, each of which guaranteed a real-valued output for a
real-valued input. This proved useful for our protocol, since the
representation of their data as a vector in a high-dimensional
space is closely related to the representation of our data as
vector-valued messages. Finally, Cormode et al. [26] explored
the application of the DFT over the Boolean hypercube, also
known as the Hadamard Transform, in the Local Model. Their
algorithms provide a useful link between the theory of the DFT
and its application to a closely related model of DP, as well
as illustrating the benefits of such a transform on the resulting
dependencies.

III. PRELIMINARIES

We consider randomized mechanisms [11] M, R under
domains X, Y, and apply them to input datasets �D, �D′ to
generate (vector-valued) messages �xi , �x ′i . We write [k] =
{1, . . . , k} and N for the set of natural numbers.

A. Models of Differential Privacy

The essence of Differential Privacy (DP) is the requirement
that the contribution �xi , of a user i , to a dataset �D =
(�x1, . . . , �xn) does not have a significant impact on the outcome
of the mechanism applied to that dataset.

Let us consider the centralized model of DP, in which
random noise is only introduced after the users’ inputs are
gathered by a (trusted) aggregator. Consider further a dataset
�D′ that differs from �D only in the contribution of a single

user, denoted �D � �D′. Given ε ≥ 0 and δ ∈ (0, 1),

we define a randomized mechanism M : Xn → Y to be
(ε, δ)-differentially private if ∀ �D � �D′,∀E ⊆ Y:

Pr[M( �D) ∈ E] ≤ eε · Pr[M( �D′) ∈ E] + δ [11].

In this definition, we assume that the trusted aggregator
obtains raw data from all users and introduces necessary
mechanisms to provide privacy.

In the local model of DP, each user i independently uses
randomness on their input �xi ∈ X by using a local randomizer
R : X → Y to obtain a perturbed result R(�xi ). We say
that the local randomizer is (ε, δ)-differentially private if
∀ �D, �D′,∀E ⊆ Y:

Pr[R(�xi ) ∈ E] ≤ eε · Pr[R(�x ′i ) ∈ E] + δ [3],

where �x ′i ∈ X is some other valid input vector that i could
hold. The Local Model guarantees that any observer will not
have access to the raw data from any of the users. That is,
it removes the requirement for trust in the aggregator. The
consequence of this removal of trust is that a higher level of
noise per user must be tolerated to achieve the same privacy
guarantee.

B. Single-Message Shuffle Model

The Single-Message Shuffle Model can be considered to sit
in between the Centralized and Local Models of DP [3]. Let
a protocol P in the Single-Message Shuffle Model be of the
form P = (R,A), where R : X→ Y is the local randomizer,
and A : Yn → Z is the analyzer of P .

Overall, P implements a mechanism P : Xn → Z as fol-
lows. Each user i independently applies the local randomizer
to their message �xi to obtain a message �yi = R(�xi ). Sub-
sequently, the messages (�y1, . . . , �yn) are randomly permuted
by a trusted shuffler S : Yn → Yn . The random permutation
S(�y1, . . . , �yn) is submitted to an untrusted data collector, who
applies the analyzer A to obtain an output for the mechanism.
In summary, the output of P(�x1, . . . , �xn) is given by:

A ◦ S ◦Rn(�x) = A(S(R(�x1), . . . ,R(�xn))).

Note that the data collector observing the shuffled messages
S(�y1, . . . , �yn) obtains no information about which user gener-
ated each of the messages. Therefore, the privacy of P relies
on the indistinguishability between the shuffles S ◦Rn( �D) and
S ◦Rn( �D′) for datasets �D � �D′. The analyzer can represent
the shuffled messages as a histogram, which counts the number
of occurrences of the possible outputs of Y.

C. Measuring Accuracy

In Sections IV and V we use the mean squared error to
compare the overall output of our new private summation
protocol in the Single-Message Shuffle Model with the original
dataset. The MSE is used to measure the average squared
difference in the comparison between a fixed input f ( �D) to the
randomized protocol P , and its output P( �D). In this context,

MSE(P, �D) = E
[
(P( �D)− f ( �D))2

]
,
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Algorithm 1: Local Randomizer RP H
γ,k,n

Public Parameters:
γ ∈ [0, 1], domain size k, and
number of parties n

Input: xi ∈ [k]
Output: yi ∈ [k]
Sample b← Ber(γ )
if b = 0 then let yi ← xi

else sample yi ← Unif([k])
return yi

where the expectation is taken over the randomness of P . Note
when E[P( �D)] = f ( �D), MSE is equivalent to variance, i.e.:

MSE(P, �D) = E
[
(P( �D)− E[P( �D)])2

]
= Var[P( �D)].

IV. VECTOR SUM IN THE SHUFFLE MODEL

In this section we introduce our new protocol for vector
summation in the Shuffle Model and tune its parameters to
optimize accuracy.

A. Basic Randomizer

First, we describe a basic local randomizer applied by each
user i to an input xi ∈ [k], a fundamental technique in privacy.
The output of this protocol is a (private) histogram of shuffled
messages over the domain [k].

The Local Randomizer RP H
γ,k,n , shown in Algorithm 1,

applies a generalized randomized response mechanism that
returns the true message xi with probability 1 − γ and a
uniformly random message with probability γ . Such a basic
randomizer is used by Balle et al. [3] in the Single-Message
Shuffle Model for scalar-valued messages, as well as in
several other previous works in the Local Model [27]–[29].
In Section IV-C, we find an appropriate γ to optimize the
proportion of random messages that are submitted, and there-
fore guarantee DP.

We now describe how the presence of these random mes-
sages can form a ‘privacy blanket’ to protect against a differ-
ence attack on a particular user. Suppose we apply Algorithm 1
to the messages from all n users. Note that a subset B
of approximately γ n of these users returned a uniformly
random message, while the remaining users returned their
true message. Following Balle et al. [3], the analyzer can
represent the messages sent by users in B by a histogram Y1 of
uniformly random messages, and can form a histogram Y2 of
truthful messages from users not in B . As these subsets are
mutually exclusive and collectively exhaustive, the information
represented by the analyzer is equivalent to the histogram
Y = Y1 ∪ Y2.

Consider two neighbouring datasets, each consisting of
n messages from n users, that differ only on the input
from the nth user. To simplify the discussion and subsequent
proof, we temporarily omit the action of the shuffler. By the
post-processing property of DP, this can be reintroduced
later on without adversely affecting the privacy guarantees.

To achieve DP we need to find an appropriate γ such that
when Algorithm 1 is applied, the change in Y is appropriately
bounded. As the knowledge of either the set B or the messages
from the first n − 1 users does not affect DP, we can assume
that the analyzer knows both of these details. This lets the
analyzer remove all of the truthful messages associated with
the first n − 1 users from Y .

If the nth user is in B , this means their submission is inde-
pendent of their input, so we trivially satisfy DP. Otherwise,
the (curious) analyzer knows that the nth user has submitted
their true message xn . The analyzer can remove all of the
truthful messages associated with the first n−1 users from Y ,
and obtain Y1 ∪ {xn}. The subsequent privacy analysis will
argue that this does not reveal xn if γ is set so that Y1, the
histogram of random messages, appropriately ‘hides’ xn .

B. Private Summation of Vector-Valued Messages

Here, we extend the protocol from Section IV-A to address
the problem of computing the sum of n real vectors, each
of the form �xi = (x (1)

i , . . . , x (d)
i ) ∈ [0, 1]d , in the Single-

Message Shuffle Model. Specifically, we analyze the utility
of a protocol Pd,k,n,t = (Rd,k,n,t ,Ad,k,t ) for this purpose,
by using the MSE from Section III-C as the accuracy measure.
In the scalar case, each user applies the protocol to their entire
input [3]. Moving to the vector case, we allow each user to
independently sample a set of 1 ≤ t ≤ d coordinates from
their vector to report. Our analysis allows us to optimize the
parameter t .

Hence, the first step of the Local Randomizer Rd,k,n,t ,
presented in Algorithm 2, is to uniformly sample t coordinates
(αi1, . . . , αit ) ∈ [d] (without replacement) from each vector
�xi . To compute a differentially private approximation of

∑
i �xi ,

we fix a quantization level k. Then we randomly round
each x

(αi j )
i to obtain x̄

(αi j )
i as either ��x (αi j )

i k or �x (αi j )
i k.

Next, we apply the randomized response mechanism from
Algorithm 1 to each x̄

(αi j )

i , which sets each output y
(αi j )

i

independently to be equal to x̄
(αi j )

i with probability 1−γ , or a

random value in {0, 1, . . . , k} with probability γ . Each y
(αi j )
i

will contribute to a histogram of the form (y
(αi j )
1 , . . . , y

(αi j )
n )

as in Section IV-A.
The Analyzer Ad,k,t , shown in Algorithm 3, aggregates

the histograms to approximate
∑

i �xi by post-processing the
vectors coordinate-wise. More precisely, the analyzer sets
each output y

(αi j )

i to y(l)
i , where the new label l is from its

corresponding input x (l)
i of the original d-dimensional vector

�xi . For all inputs x (l)
i that were not sampled, we set y(l)

i = 0.
Subsequently, the analyzer aggregates the sets of outputs from
all users corresponding to each of those l coordinates in turn,
so that a d-dimensional vector is formed. Finally, a standard
debiasing step is applied to this vector to remove the scaling
and rounding applied to each submission. DeBias returns an
unbiased estimator, �z, which calculates an estimate of the true
sum of the vectors by subtracting the expected uniform noise
from the randomized sum of the vectors.

Note that Algorithms 2 and 3 are both required to gen-
eralize the scalar approach from Balle et al. [3] to vectors.
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Algorithm 2: Local Randomizer Rd,k,n,t

Public Parameters: k, t , dimension d , and number of
parties n

Input: �xi = (x (1)
i , . . . , x (d)

i ) ∈ [0, 1]d
Output: �yi = (y(αi1)

i , . . . , y(αit )
i ) ∈ {0, 1, . . . , k}t

Sample (αi1, . . . , αit )← Unif([d])
Let x̄

(αi j )

i ← �x (αi j )

i k�+ Ber(x
(αi j )

i k − �x (αi j )

i k �)
� x̄

(αi j )

i : encoding of x
(αi j )

i with precision k

� y
(αi j )
i : apply Algorithm 1 to each x̄

(αi j )
i

return �yi = (y(αi1)
i , . . . , y(αit )

i )

Algorithm 3: Analyzer Ad,k,t

Public Parameters: k, t , and dimension d
Input: Multiset

{�yi
}

i∈[n], with

(y(αi1)
i , . . . , y(αit )

i ) ∈ {0, 1, . . . , k}t
Output: �z = (z(1), . . . , z(d)) ∈ [0, 1]d
Let y(l)

i ← y
(αi j )

i

� y
(αi j )

i : submission corresponding to x (l)
i

Let (ẑ(1), . . . , ẑ(d))← ( 1
k

∑
i y(1)

i , . . . , 1
k

∑
i y(d)

i )

Let (z(1), . . . , z(d))←
(DeBias(ẑ(1)), . . . ,DeBias(ẑ(d)))
� DeBias(ẑ(l)) = (ẑ(l) − γ

2 · |y(l)
i |)/(1− γ )

return �z = (z(1), . . . , z(d))

In Section IV-C, we carefully prove that we can combine
Algorithms 2 and 3 to privately compute the sum of
vector-valued messages in the Shuffle Model, thus resulting
in our first contribution.

C. Privacy Analysis of Algorithms 2 and 3

In this section, we will find an appropriate γ that ensures
that the mechanism described in Algorithms 2 and 3 satisfies
(ε, δ)-DP for vector-valued messages in the Single-Message
Shuffle Model. To achieve this, we prove the following the-
orem, where we initially assume ε < 1 to simplify our
computations.

At the end of this section, we discuss how to cover the
additional case 1 ≤ ε < 6 to suit our experimental study.
This moderate range of ε is justified by the fact that privacy
is weak for ε ≥ 6. The upper limit of � is arbitrary: it can
be set to any positive integer, with an almost identical proof
in each case. Therefore, we have chosen 6 as the limit due to
practical usage, as echoed by the literature [11], [13], [14].

Theorem 4.1: The shuffled mechanism M = S ◦ Rd,k,n,t

is (ε, δ)-DP for any d, k, n ∈ N, {t ∈ N | t ∈ [d]}, ε < 6 and
δ ∈ (0, 1] such that:

γ =
{ 56dk log(1/δ) log(2t/δ)

(n−1)ε2 , when ε < 1
2016dk log(1/δ) log(2t/δ)

(n−1)ε2 , when 1 ≤ ε < 6.

Proof: Let �D = (�x1, . . . , �xn) and �D′ = (�x1, . . . , �x ′n) be
the two neighbouring datasets differing only in the input of
the nth user, as used in Section IV-A. Here each vector-valued
message �xi is of the form (x (1)

i , . . . , x (d)
i ). Recall from

Section IV-A that we assume that the analyzer can see the
users in B (i.e., the subset of users that returned a uni-
formly random message), as well as the inputs from the first
n − 1 users.

We now introduce the vector view VViewM( �D) as the
collection of information that the analyzer is able to see after
the mechanism M is applied to all vector-valued messages in

the dataset �D. VViewM( �D) is defined as the tuple ( �Y , �D∩, �b),
where �Y is the multiset containing the outputs {�y1, . . . , �yn} of
the mechanism M( �D), �D∩ is the vector containing the inputs
(�x1, . . . , �xn−1) from the first n−1 users, and �b contains binary
vectors (�b1, . . . , �bn) which indicate for which coordinates each
user reports truthful information. This vector view can be pro-
jected to t overlapping scalar views by applying Algorithm 2
only to the j th uniformly sampled coordinate αi j ∈ [d] from

each user, where j ∈ [t]. The j th scalar view View
(αi j )

M ( �D)

of VViewM( �D) is defined as the tuple ( �Y (αi j ), �D(αi j )
∩ , �b(αi j )),

where:
�Y (αi j ) =M( �D(αi j )) = {y(αi j )

1 , . . . , y
(αi j )
n },

�D(αi j )
∩ = (x

(αi j )
1 , . . . , x

(αi j )
n−1 )

and �b (αi j ) = (b
(αi j )
1 , . . . , b

(αi j )
n )

are the analogous definitions of �Y , �D∩ and �b, but containing
only the information referring to the j th uniformly sampled
coordinate of each vector-valued message.

The following advanced composition results will be used in
our setting to get a tight upper bound:

Theorem 4.2 (Dwork et al. [11]): For all ε′, δ′, δ ≥ 0,
the class of (ε′, δ′)-differentially private mechanisms satisfies
(ε, rδ′ + δ)-differential privacy under r -fold adaptive compo-
sition for:

ε = √
2r log(1/δ)ε′ + rε′

(
eε′ − 1

)
.

Corollary 4.3: Given target privacy parameters 0 < ε <
1 and δ > 0, to ensure (ε, rδ′ + δ) cumulative privacy loss
over r mechanisms, it suffices that each mechanism is (ε′, δ′)-
DP, where:

ε′ = ε

2
√

2r log(1/δ)
.

To show that VViewM( �D) satisfies (ε, δ)-DP it suffices to
prove that:

PrṼ∼VViewM( �D)

[
Pr[VViewM( �D) = Ṽ]
Pr[VViewM( �D′) = Ṽ] ≥ eε

]
≤ δ. (1)

By considering this vector view as a union of overlapping
scalar views, and letting r = t in Corollary 4.3, it is sufficient
to derive (1) from:

Pr
Vαi j ∼View

(αi j )

M ( �D)

⎡⎣ Pr[View
(αi j )

M ( �D) = Vαi j ]
Pr[View

(αi j )

M ( �D′) = Vαi j ]
≥ eε′

⎤⎦ ≤ δ′,

(2)

where Ṽ =⋃
αi j

Vαi j , ε′ = ε

2
√

2t log(1/δ)
and δ′ = δ

t .

Lemma 4.4: Condition (2) implies condition (1).
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Proof: We can express VViewM( �D) as the composition
of the t scalar views View(αi1)

M , . . . , View(αit )
M , as:

Pr[VViewM( �D) = Ṽ]
= Pr[View(αi1)

M ( �D) = Vαi1 ∧ · · · ∧ View(αit )
M ( �D) = Vαit ]

= Pr[View(αi1)
M ( �D) = Vαi1 ] · · · · · Pr[View(αit )

M ( �D) = Vαit ].
Our desired result is immediate by applying Corollary 4.3,

which states that the use of t overlapping (ε′, δ′)-DP mecha-
nisms, when taken together, is (ε, δ)-DP. This applies in our
setting, since we have assumed that VViewM( �D) satisfies the
requirements of (ε, δ)-DP, and that each of the t overlapping
scalar views is formed identically but for a different uniformly
sampled coordinate of the vector-valued messages.

To complete the proof of Theorem 4.1 for ε < 1, it remains
to show that for a uniformly sampled coordinate αi j ∈ [d],
View

(αi j )

M ( �D) satisfies (ε′, δ′)-DP.
Lemma 4.5: Condition (2) holds.

Proof: See Appendix.
We now show that the above proof can be adjusted to cover

the additional case 1 ≤ ε < 6. This will be sufficient to
complete the proof of our main Theorem 4.1.

First, we scale the setting of ε′ by a multiple of 6 in
Corollary 4.3 so that the advanced composition property holds
for all 1 ≤ ε < 6. We now insert ε′ = ε

12
√

2r log(1/δ)
into the

proof of Theorem 4.1, resulting in a change of constant from
56 to 2016.

D. Accuracy Bounds for Shuffled Vector Sum

We now formulate an upper bound for the MSE of our
protocol, and then identify the value(s) of t that minimize this
upper bound.

First, note that encoding the coordinate x
(αi j )
i as x̄

(αi j )
i =

��[
]
x

(αi j )

i k + Ber(x
(αi j )

i k − ��[
]
x

(αi j )

i k) in Algorithm 2

ensures that E[x̄ (αi j )

i /k] = E[x (αi j )

i ]. This means that our
protocol is unbiased. For any unbiased random variable X
with a < X < b then Var[X] ≤ (b − a)2/4, and so the MSE
per coordinate due to the fixed-point approximation of the true
vector in Rd,k,n,t is at most 1

4k2 . Meanwhile, the MSE when
Rd,k,n,t submits a random vector is at most 1

2 per coordinate.
We now use the unbiasedness of our protocol to obtain a

result for estimating the squared error between the estimated
average vector and the true average vector. When calculating
the MSE, each coordinate location is used with expectation
n/d . Therefore, we define the normalized MSE, or M̂SE,
as the normalization of the MSE by a factor of (n/d)2.

Theorem 4.6: For any d, n ∈ N, {t ∈ N | t ∈ [d]},
ε < 6 and δ ∈ (0, 1], there exists a parameter k such that
Pd,k,n,t is (ε, δ)-DP and

M̂SE(Pd,k,n,t ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2td8/3(14 log(1/δ) log(2t/δ))2/3

(1−γ )2n5/3ε4/3 ,

when ε < 1
8td8/3(63 log(1/δ) log(2t/δ))2/3

(1−γ )2n5/3ε4/3 ,

when 1 ≤ ε < 6,

where M̂SE denotes the squared error between the estimated
average vector and the true average vector.

Proof: We consider the
∑d

l=1 DeBias(ẑ(l)) of Pd,k,n,t

compared to the corresponding input
∑t

j=1
∑n

i=1 x
(αi j )
i over

the dataset �D. We use the bounds on the variance of the
randomized response mechanism from Theorem 4.6 to give
us an upper bound for this comparison.

MSE(Pd,k,n,t )

= sup
�D

E

⎡⎢⎣
∥∥∥∥∥∥

d∑
l=1

DeBias(ẑ(l)) el −
t∑

j=1

n∑
i=1

x
(αi j )

i eαi j

∥∥∥∥∥∥
2

2

⎤⎥⎦
(where el is the l th basis vector)

= sup
�D

E

⎡⎢⎣
⎛⎝ t∑

j=1

n∑
i=1

(
DeBias(y

(αi j )

i /k)− x
(αi j )

i

)⎞⎠2
⎤⎥⎦

= sup
�D

t∑
j=1

n∑
i=1

E
[(
DeBias(y

(αi j )
i /k)− x

(αi j )
i

)2
]

(squared random variables are unbiased and independent)

= sup
�D

t∑
j=1

n∑
i=1

Var
[
DeBias(y

(αi j )

i /k)
]

= tn

(1− γ )2 sup
x

(αi1)
1

Var[y(αi1)
1 /k] ≤ tn

(1− γ )2

(
1− γ

4k2 +
γ

2

)

≤ tn

(1− γ )2

(
1

4k2 +
Aεdk log(1/δ) log(2t/δ)

(n − 1)ε2

)
,

where Aε = 28 when ε < 1, and Aε = 1008 when 1 ≤ ε <
6. In other words, Aε is equal to half the constant term in
the expression of γ stated in Theorem 4.1. The choice k =

(n−1)ε2

4Aεd log(1/δ) log(2t/δ) minimizes the bracketed sum above and
the bounds in the statement of the theorem follow.

To obtain the error between the estimated average vector
and the true average vector, we simply take the square root of
the result obtained in Theorem 4.6.

Corollary 4.7: For every statistical query q : X �→ [0, 1]d,
d, n ∈ N, {t ∈ N | t ∈ [d]}, ε < 6 and δ ∈ (0, 1], there is an
(ε, δ)-DP n-party unbiased protocol for estimating d

n

∑
i q(�xi)

in the Single-Message Shuffle Model with standard deviation

σ̂ (Pd,k,n,t ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(2t)1/2d4/3(14 log(1/δ) log(2t/δ))1/3

(1−γ )n5/6ε2/3 ,

when ε < 1
(8t)1/2d4/3(63 log(1/δ) log(2t/δ))1/3

(1−γ )n5/6ε2/3 ,

when 1 ≤ ε < 6,

where σ̂ denotes the error between the estimated average
vector and the true average vector.

To summarize, we have produced a new unbiased pro-
tocol for the computation of the sum of n real vectors in
the Single-Message Shuffle Model with normalized MSE
Oε,δ(d8/3tn−5/3), using advanced composition results from
Dwork et al. [11]. Minimizing this bound as a function of
t leads us to choose t = 1, but any choice of t that is small
and not dependent on d produces a bound of the same order.
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In our experimental study, we determine that the best choice
of t in practice is indeed t = 1.

E. Improved Bounds for t = 1

We observe that in the optimal case in which t = 1, we can
tighten the bounds further, as we do not need to invoke the
advanced composition results when each user samples only a
single coordinate. This changes the value of γ by a factor of
O(log(1/δ)), which propagates through to the expression for
the MSE. That is, we can more simply set ε′ = ε and δ′ = δ
in the proof of Theorem 4.1. When ε < 1, the computation
is straightforward, with c ≥ 14

ε′2 log(2t/δ) being chosen as
before. However, when 1 ≤ ε < 6, a tighter c ≥ 80

ε′2 log(2t/δ)
must be selected, as the condition ε′ < 1 no longer
holds.

Using ε′ < 6, we have:

(1− exp (−ε′/2)) ≥
(

1− exp

(
− 2

3
√

15

))
ε′ ≥ ε′

2
√

10
.

Thus, we have:
Pr
[

Nθ

Nφ
≥ eε′

]
≤ exp

(
− c

3
(ε′/2)2

)
+ exp

(
− c

2

( ε′

2
√

10

)2)
≤ 2 exp

(
− 80

2ε′2
ε′2

40
log(2t/δ)

)
≤ δ/t,

which yields:

γ =
⎧⎨⎩max

{
14dk log(2/δ)

(n−1)ε2 , 27dk
(n−1)ε

}
, when ε < 1

max
{

80dk log(2/δ)
(n−1)ε2 , 36dk

11(n−1)ε

}
, when 1 ≤ ε < 6.

Note that the above expression for γ in the case ε <
1 coincides with the result obtained by Balle et al. in the
scalar case [3]. Putting this expression for γ in the proof of
Theorem 4.6, with the choice

k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

{(
nε2

28d log(2/δ)

)1/3
,
( nε

54d

)1/3
}
,

when ε < 1

min
{(

nε2

160d log(2/δ)

)1/3
,
( 11nε

72d

)1/3
}
,

when 1 ≤ ε < 6,

causes the upper bound on the normalized MSE to reduce to:

M̂SE =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

{
981/3d8/3 log2/3(2/δ)

(1−γ )2n5/3ε4/3 , 18d8/3

(1−γ )2n5/3(4ε)2/3

}
,

when ε < 1

max
{

2d8/3(20 log(2/δ))2/3

(1−γ )2n5/3ε4/3 , 2(92/3)d8/3

(1−γ )2n5/3(11ε)2/3

}
,

when 1 ≤ ε < 6.

By updating Corollary 4.7 in the same way, we can conclude
that for the optimal choice t = 1, the normalized standard
deviation of our unbiased protocol can be further tightened
to:

σ̂ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

{
981/6d4/3 log1/3(2/δ)

(1−γ )n5/6ε2/3 , 181/2d4/3

(1−γ )n5/6(4ε)1/3

}
,

when ε < 1

max
{

21/2d4/3(20 log(2/δ))1/3

(1−γ )n5/6ε2/3 , 21/291/3d4/3

(1−γ )n5/6(11ε)1/3

}
,

when 1 ≤ ε < 6.

V. TRANSFORMING SUMMATION IN THE SHUFFLE MODEL

In this section we further improve the bound we have
obtained for private summation by using an orthonormal trans-
formation. We make use of the (Discrete) Fourier Transforma-
tion of the data, which concentrates information about signals
with a particular property into a small number of coefficients.
We follow the outline of Rastogi and Nath [7], who follow
a similar approach for time series data in the centralized DP
model. Our goal is to seek to improve the normalized MSE
of our protocol, by concentrating on a smaller number of
coefficients in the Fourier domain.

Recall that we are addressing the problem of computing the
sum of n real d-dimensional vectors, each of the form

�xi = (x (1)
i , . . . , x (d)

i ) ∈ [0, 1]d ,

in the Single-Message Shuffle Model. In Section IV-B, we for-
mulated a new protocol Pd,k,n,t , which adds random noise
to each vector �xi in turn, ensuring that the computation of
the (approximate) sum �z = (z(1), . . . , z(d)) ∈ [0, 1]d of
these vectors is (ε, δ)-DP. In particular, a randomized response
mechanism was applied to each of the t uniformly sampled
coordinates from the d available choices. In Section IV-E,
we obtained our tight bound Oε,δ(d8/3n−5/3) for the normal-
ized MSE of our protocol.

If we are able to compress each of the vectors �xi to a highly
representative m-dimensional vector before applying Pd,k,n,t ,
it will be possible to improve this bound to Oε,δ(m8/3n−5/3).
Our method involves applying the Discrete Fourier Trans-
form (DFT) to the d-dimensional vector �xi to obtain another
d-dimensional vector. The key to this approach is the assump-
tion that the DFT captures the bulk of the information about
the vector in a prefix of the coefficients. While this is not
true in general for arbitrary signals, such as ones where each
component is chosen independently and uniformly at random,
it has been observed to hold for many naturally occurring
scenarios, such as time-series of human and natural activity,
audio signals, and so on [25]. When this assumption holds,
it is possible to eliminate most of the coefficients of the
transformed vector whilst keeping the vast majority of the
information about the data. In particular, this holds true for
the ECG Heartbeat Categorization Dataset that we use in our
experimental study, as we see later. Absent the above property,
eliminating coefficients in this way would not necessarily
result in most of the information being retained.

By keeping only the first m Fourier coefficients of DFT(�xi ),
where m � d , and then applying Pd,k,n,t to m coefficients
instead of d , we can ensure that the accuracy lost from
the d − m eliminated coordinates is much smaller than the
improvement in the normalized MSE bound. This close vari-
ant of Pd,k,n,t will be expressed as an algorithm Fd,k,m,n,t

in Section V-B. To motivate this, we first recall how to
approximate a d-dimensional vector using the DFT and its
inverse.

A. Discrete Fourier Transform

The DFT of a d-dimensional vector �xi = (x (1)
i , . . . , x (d)

i )
∈ [0, 1]d is defined to be the linear transform giving another
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d-dimensional vector DFT(�xi ) = (DFT(x (1)
i ), . . . , DFT(x (d)

i ))

∈ [0, 1]d , where each DFT(x ( j )
i ) coefficient is defined as:

DFT(x ( j )
i ) = 1√

d

d∑
k=1

x (k)
i e

2π
√−1
d j k .

The Inverse DFT of �xi is the corresponding inverse
linear transform to the DFT. It is represented as
IDFT(�xi ) = (IDFT(x (1)

i ), . . . , IDFT(x (d)
i )) ∈ [0, 1]d ,

where each IDFT(x ( j )
i ) is defined as:

IDFT(x ( j )
i ) = 1√

d

d∑
k=1

x (k)
i e−

2π
√−1
d j k .

Although the Fourier Transform gives complex results in
general, the DFT can be represented by d real numbers for
real input data of dimension d . Importantly, these real numbers
can be bounded. Given �y, we have ‖�y ‖2 = ‖DFT(�y )‖2
(Plancherel Theorem [30]). So if we ensure that our vectors
are normalized so that ‖�xi‖1 = 1, then ‖DFT(�xi )‖2 = ‖�xi‖2 ≤
‖�xi‖1. This in turn means that every |DFT(�x ( j )

i )| ≤ 1, i.e., the
individual Fourier coefficient values are in the range −1 to
+1. An additional property is that the first Fourier coefficient
gives the so-called ‘DC component’, DFT(�x (1)

i ) =∑d
j=1 �x ( j )

i ,
which, if �x is a normalized non-negative vector, we can assume
to be equal to 1.

We have established that in our case, each transformed
vector DFT(�xi ) contains most of the information from the
input. So we can choose a small number m � d such
that only the first m Fourier coefficients of the vector
returned by DFT(�xi ) are kept. This leaves an m-dimensional
summary:

DFTm(�xi ) = (DFT(x (1)
i ), . . . , DFT(x (m)

i )) ∈ [−1, 1]m.

We retrieve a version of the original data by ‘padding’ the
summary, by appending d−m zeros to DFTm(�xi ), denoted by
PADd , then performing the inverse transform:
�x ′i = (x (1)′

i , . . . , x (d)′
i ) = IDFT(PADd (DFTm(�xi ))).

The accuracy of this approximation is calculated via the
reconstruction error of each coordinate:

REm
j (�xi) =

(
x ( j )′

i − x ( j )
i

)2 =
d∑

j=m+1

DFT(x ( j )
i )2.

B. Fourier Summation Algorithm

Algorithm 4 describes Fd,k,m,n,t , an application of the
approximation method from Section V-A to the private sum-
mation of vector-valued messages. After the first m Fourier
coefficients in the DFT of each �xi are computed, we apply
our protocol Pd,k,n,t from Section IV-B to each m-dimensional
vector, where the analyzer returns a debiased m-dimensional
vector representing the mean of the aggregated outputs from
each user. Note that in this algorithm each user randomizes t
uniformly sampled coordinates from their transformed vector,
so their sample is likely to be much more representative of
the original vector. To complete the algorithm, the returned

Algorithm 4: Fourier Summation Fd,k,m,n,t

Public Parameters: k, m, t , dimension d , and number
of parties n

Input: �D = (�x1, . . . , �xn) ∈ ([0, 1]d)n

Compute
�D∗ = (DFTm(�x1), . . . , DFTm(�xn)) ∈ ([0, 1]m)n

Compute �z ∗ =
(Pd,k,n,t (DFTm(�x1)), . . . ,Pd,k,n,t (DFTm(�xn))) ∈
[0, 1]m

Return �z ′ = IDFT(PADd(�z ∗)) ∈ [0, 1]d
Output: �z ′ = (z(1)′, . . . , z(d)′) ∈ [0, 1]d

m-dimensional vector is ‘padded’ with d − m zeros and
then transformed back to the original domain. The output of
Fd,k,m,n,t is a close approximation to the output of Pd,k,n,t ,
differing only in the reconstruction errors of each returned
coordinate.

There is one discrepancy to address: our basic vector
summation protocol requires each coordinate to be in the
range [0, 1], while the DFT values may be in the range
[−1, 1]. There are two natural approaches. We could extend
the protocol to handle negative values, by expanding the the
histogram to 2k buckets, k for positive values and k for the
negative ones. Or, we could remap the Fourier coefficients by
a linear transformation (adding 1 and dividing the result by
2) before putting them into the protocol, then applying the
inverse of this transform on the decoded result. We apply the
latter approach in our experiments.

The privacy of this procedure follows immediately from the
discussion in Section IV-C. The DFT of a vector of dimension
d produces a new vector of the same dimension, whose privacy
is protected by the shuffle-based protocol. The inversion of the
DFT on the reconstructed vector can be considered as post-
processing, and does not affect the privacy properties of the
procedure.

C. Analyzing Accuracy

In Section IV-E we refined the bound obtained from The-
orem 4.6 to state that for any d, n ∈ N, t = 1, ε < 6 and
δ ∈ (0, 1], there exists a parameter k such that Pd,k,n,t is
(ε, δ)-DP and:
M̂SE(Pd,k,n,t )

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

{
981/3d8/3 log2/3(2/δ)

(1−γ )2n5/3ε4/3 , 18d8/3

(1−γ )2n5/3(4ε)2/3

}
,

when ε < 1

max
{

2d8/3(20 log(2/δ))2/3

(1−γ )2n5/3ε4/3 , 2(92/3)d8/3

(1−γ )2n5/3(11ε)2/3

}
,

when 1 ≤ ε < 6.

As Fd,k,m,n,t applies Pd,k,n,t on m-dimensional vectors,
we expect its normalized MSE to be a function of m instead
of d , plus the reconstruction error for using m instead of d
Fourier coefficients. Note that any γ that guarantees (ε, δ)-
DP in Pd,k,n,t will also guarantee (ε, δ)-DP in Fd,k,m,n,t .
Using this information, we calculate the normalized MSE of
Fd,k,m,n,t in the following theorem.
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Theorem 5.1: Fix the value of γ we found in Theorem 4.1
so that Fd,k,m,n,t is (ε, δ)-DP. Then, for all j ∈ [d]:
M̂SE(Fd,k,m,n,t )

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

{
981/3m8/3 log2/3(2/δ)

(1−γ )2n5/3ε4/3 , 18m8/3

(1−γ )2n5/3(4ε)2/3

}
,

when ε < 1

max
{

2m8/3(20 log(2/δ))2/3

(1−γ )2n5/3ε4/3 , 2(92/3)m8/3

(1−γ )2n5/3(11ε)2/3

}
,

when 1 ≤ ε < 6

+
d∑

j=1

REm
j (�z).

Proof: Let �z ′ = (z(1)′, . . . , z(d)′) ∈ [0, 1]d be the
d-dimensional vector returned by the Fd,k,m,n,t algorithm.
We can make use of the orthonormality of the Fourier Trans-
form to express the error in reconstruction in terms of the error
in the Fourier coefficients:

M̂SE(Fd,k,m,n,t )

= (�z ′ − �z)2 =
d∑

j=1

DFT(z′( j ) − z( j ))2

=
m∑

j=1

DFT(z′( j ) − z( j ))2 +
d∑

j=m+1

DFT(z′( j ) − z( j ))2

= M̂SE(Pd=m,k,n,t )+
d∑

j=m+1

DFT(z( j ))2

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

{
981/3m8/3 log2/3(2/δ)

(1−γ )2n5/3ε4/3 , 18m8/3

(1−γ )2n5/3(4ε)2/3

}
,

when ε < 1

max
{

2m8/3(20 log(2/δ))2/3

(1−γ )2n5/3ε4/3 , 2(92/3)m8/3

(1−γ )2n5/3(11ε)2/3

}
,

when 1 ≤ ε < 6

+
d∑

j=1

REm
j (�z).

M̂SE(Fd,k,m,n,t )

= (�z ′ − �z)2 ≤ (μ− �z)2 + (�z ′ − μ)2

≤
d∑

j=1

(z( j )′ − z( j ))2 + M̂SE(Pd=m,k,n,t )

=
d∑

j=1

REm
j (�z)

+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

{
981/3m8/3 log2/3(2/δ)

(1−γ )2n5/3ε4/3 , 18m8/3

(1−γ )2n5/3(4ε)2/3

}
,

when ε < 1

max
{

2m8/3(20 log(2/δ))2/3

(1−γ )2n5/3ε4/3 , 2(92/3)m8/3

(1−γ )2n5/3(11ε)2/3

}
,

when 1 ≤ ε < 6.

We also obtain a tighter bound for the analogous corollary
to Theorem 4.6.

Corollary 5.2: For every statistical query q : X �→ [0, 1]d,
d, n ∈ N, t = 1, ε < 6 and δ ∈ (0, 1], there is an (ε, δ)-DP

n-party unbiased protocol for estimating 1
n

∑
i q(�xi) in the

Single-Message Shuffle Model with standard deviation

σ̂ (Fd,k,m,n,t )

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

{
981/6m4/3 log1/3(2/δ)

(1−γ )n5/6ε2/3 , 181/2m4/3

(1−γ )n5/6(4ε)1/3

}
,

when ε < 1

max
{

21/2m4/3(20 log(2/δ))1/3

(1−γ )n5/6ε2/3 , 21/291/3m4/3

(1−γ )n5/6(11ε)1/3

}
,

when 1 ≤ ε < 6

+
√√√√ d∑

j=1

REm
j (�z).

To summarize, we have improved the normalized MSE of
our new unbiased protocol Pd,k,n,t for the computation of the
sum of n real vectors in the Single-Message Shuffle Model
to Oε,δ(m8/3n−5/3), where m can be much smaller than d ,
by using the DFT to compress each of the vectors to be
m-dimensional, but retain most of their data.

To choose the right m, we need to find a good balance
between the terms in Theorem 5.1. If m is too big, the
perturbation error O(m8/3n−5/3) gives the performance of
Pd,k,n,t , while if m is too small the reconstruction error∑d

j=1 REm
j (�z) becomes too big.

If we compare the result of Theorem 5.1 with the refined
version of Theorem 4.6, we can see that the dependence on
ε and n are the same. However, there is a dependence on
m8/3 in the former, replaced by a dependence on d8/3 in the
latter, where m is chosen to be smaller than d , and could be
much smaller. This vast improvement in the dependence of
the dimension is counteracted by the reconstruction error in
the Fourier approach, which will not be too large as long as
m is set appropriately. To find the optimal value for m for
Fd,k,m,n,t , we will compare these two theorems numerically,
using a realistic dataset to calculate the dependencies and the
reconstruction error.

VI. EXPERIMENTAL EVALUATION

In this section we present and compare the bounds
generated by applying Algorithms 2, 3 and 4 to an
ECG Heartbeat Categorization Dataset in Python. This
publicly available dataset can be found at https://www.
kaggle.com/shayanfazeli/heartbeat, and our Python code for
all experiments is available at https://github.com/mary-
python/dft/blob/master/shuffle. Firstly, we analyse the effect
of changing one key parameter at a time, whilst the others
remain the same. Our default settings are vector dimen-
sion d = 100, rounding parameter k = 3, number of
users n = 50000, number of sampled coordinates t = 1,
and differential privacy parameters ε = 0.95 and δ =
0.5. The ranges of all the above parameters have been
adjusted to best display the dependencies, whilst simulta-
neously ensuring that the parameter γ of the randomized
response mechanism is always within its permitted range
of [0, 1].

In the later experiments, where we explore the relationship
between each of ε and n on the perturbation error in the
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Fig. 1. Bar charts confirming that the choices t = 1 in (a) and k = 3 in (b) minimize the total experimental ̂MSE, and that best fit curves confirm the
dependencies d8/3 in (c), ε−4/3 in (d) and (e), and n−5/3 in (f) for the ECG Heartbeat Categorization Dataset in the non-Fourier case.

Fourier case, it is useful to simultaneously explore a range
of (Fourier) coefficients m from 5 to 95 to see the effect
of this change on the magnitude of the perturbation error.
To emphasize the benefit of using our new Fourier Summa-
tion Algorithm (FSA) on the experimental errors, we also
implement an almost identical baseline alternative. In our
baseline case, we select our m coefficients as in the FSA,
but we do not apply the DFT, or indeed the Inverse DFT to
generate the output vector from the padded vector. All other
steps, including the selection of t coordinates from our m

coefficients, the linear transform in the original space between
the ranges [−1, 1] and [0, 1], the rounding of the coordinates
and the randomized response step, still take place.

A. Results for Basic Protocol

In the non-Fourier case (Algorithms 2 and 3), we first
confirm that the choice of t = 1 is optimal, as predicted by
the results of Section IV-E. Indeed, Fig. 1 (a) shows that the
total experimental M̂SE for the ECG Heartbeat Categorization
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Fig. 2. Bar charts confirming that the choices t = 1 in (a) and k = 3 in (b) minimize the total experimental ̂MSE for the ECG Heartbeat Categorization
Dataset in the Fourier case. The first bar originates from the authors’ FSA, and the second an otherwise identical baseline case with the DFT removed.

Dataset is significantly smaller when t = 1, compared to any
other small value of t , and so we adopt this setting in all
further experiments.

Similarly, Fig. 1 (b) suggests that the total experimental
M̂SE is lowest when k = 3, which is sufficiently close to the
choice of k selected in the proof of Theorem 4.6, with all
other default parameter values substituted in. Observe that the
absolute value of the observed MSE is below 0.3 in this case,
meaning that the vector is reconstructed to a high degree of
accuracy, sufficient for many applications.

Next, we verify the bounds of d8/3, ε−4/3 and n−5/3 from
Theorem 4.6. Fig. 1 (c) is plotted with a best fit curve with
equation a multiple of d8/3, exactly as desired. Unsurprisingly,
the MSE increases as d goes up according to this superlinear
dependence.

Meanwhile, in Fig. 1 (d) and (e), we verify the dependency
ε−4/3 in the two ranges ε < 1 and 1 ≤ ε < 6. The behavior
for ε < 1 is quite smooth, but becomes more variable for
larger ε values.

A consequence of the way in which we ensure the privacy
bounds are met for the range 1 ≤ ε < 6 is that the
resulting experimental M̂SE in Fig. 1 (e) exceeds that for
ε = 0.95 in Fig. 1 (d). A tighter bound would be possible
by separately considering these values of ε when analyzing
the term 1 − exp(−ε′/2) (Section IV-E). In the interests of
brevity and not further overcomplicating the statement of the
theoretical bounds, we omit this tightening. A simpler fix is
to replace 1 ≤ ε ≤ 1.5 with ε = 0.95, to obtain both an
improved accuracy and a stronger error guarantee.

We now look at Fig. 1 (f), which fits a curve dependent
on n−7/6, sufficiently close to the required result. We see
the benefit of increasing n: as n increases by a factor of
10 across the plot, the error decreases by more than two orders
of magnitude.

B. Results for Fourier-Based Protocol

In the Fourier case (Algorithm 4), we used the packages
‘rfft’ and ‘irfft’ from SciPy’s Fast Fourier Transform (FFT)
module for the DFT and IDFT steps, which provided the most

efficient computation with a real-valued output. We compare
the results of using the DFT to a baseline approach, in order to
understand why the Fourier transform is well-suited to reduc-
ing the number of coefficients. Our simple-minded baseline
is to try to apply the same approach of dropping coordinates,
but without the use of the Fourier transformation. That is,
we only consider the first m coordinates of the input vector
to apply the method of Section IV-A to. Our experiments
demonstrate that this effort to reduce the dimensionality of
the problem is clearly unsuccessful in comparison to the new
Fourier Summation Algorithm (FSA).

In both the FSA and baseline cases, the preferred choices
of t = 1 and k = 3 are confirmed in the same way as in
the non-Fourier case, although the evidence is not quite as
clear-cut. The double bar charts in Fig. 2 (a) and (b) display
the evidence for choosing t = 1 and k = 3 respectively.
We split the bars to show the reconstruction error due to using
a fixed number of (Fourier) coefficients, and perturbation error,
which comes from the randomness in the protocol. It is clear
to see that only the perturbation error is affected when t or
k changes.

To check the dependencies ε−4/3 and n−5/3, the perturbation
error must be separated, as Theorem 5.1 shows. The pertur-
bation error grows as we take more (Fourier) coefficients.
However, as we see in more detail below, this is outweighed
by the reduction from reconstruction error, which pushes us
towards picking a larger number of coefficients to minimize
the total MSE.

In Fig. 3, best fit curves proportional to ε−4/3 have been
plotted. These curves fit the data quite well, as they pass
through all but one of the error bars. In a similar way, curves
proportional to n−5/3 confirm this remaining dependency in
Fig. 4. In this experiment, the reduction in error as n increases
is not as dramatic as the non-Fourier case. However, increasing
n by a factor of 10 still reduces the error by more than an order
of magnitude.

We now look more closely at the effect of changing the
number of (Fourier) coefficients m on the magnitude of the
perturbation error, for our ranges of ε and n in Fig. 3. We first
compare the ε dependencies when 5% of (Fourier) coefficients
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Fig. 3. Double bar charts displaying the effect of changing ε for m = 5 and m = 95 on perturbation error. Best fit curves confirm the dependency ε−4/3

from Theorem 5.1. The first bar originates from the authors’ FSA, and the second an otherwise identical baseline case with the DFT removed.

have been taken, with 95% of (Fourier) coefficients. It is
clear from the (a), (b) and (c), (d) pairs in Fig. 3 that taking
a very small number of (Fourier) coefficients results in a
drastically smaller perturbation error, by at least two orders
of magnitude. We can see that the perturbation error for the
FSA is consistently lower than for the baseline case when
m = 95, however the opposite is true for m = 5. As we will
see later, the total experimental M̂SE for the FSA is always
much smaller than the baseline case. This is because, for small
values of m, the huge reconstruction error in the baseline
case outweighs any small changes in the already minuscule
perturbation error.

A similar story can be seen in Fig. 4, where we explore
four additional intermediate choices of (Fourier) coefficients,
ranging from 20% to 75%. Increasing the (Fourier) coefficients
fourfold from 5% to 20% increases the perturbation error by
at least an order of magnitude, but the same is true for the
lesser increases from 20% to 55%, and from 55% to 95%. This
shows that as the number of (Fourier) coefficients increases,
the sensitivity of the perturbation error increases. Therefore,
it is important to choose a low number of Fourier coefficients
to reduce perturbation error, but it does not have to be lower
than m = 20, for example, as there is also a trade-off with
reconstruction error.

We now include the reconstruction error once again to
investigate the effect of changing the number of (Fourier)
coefficients m on the ratio between the perturbation and
reconstruction errors. To illustrate this pattern more clearly,
we plot a graph using a randomly generated synthetic dataset
with a sinusoidal dependence on each coordinate, as well as
the ECG Heartbeat Categorization Dataset used in all the
other experiments. We also isolate the perturbation error in
a separate graph for each dataset, for ease of comparison
between the FSA and baseline cases. All of these graphs are
displayed together in Fig. 5.

As mentioned earlier in this section, we can see that for
the ECG Heartbeat Categorization Dataset, the reconstruction
error outweighs the perturbation error, preventing the pattern
for the perturbation error to be seen clearly. However, in the
case of the synthetic dataset, the reconstruction error is much
smaller, allowing the exponential increase of the perturbation
error to have an impact on the total experimental M̂SE.
We can see that when using the synthetic dataset, retaining
approximately 80% of the (Fourier) coefficients optimizes
the total experimental M̂SE, and this occurs soon after the
perturbation error outweighs the reconstruction error.

Note that in all of the graphs in Fig. 5, the perturbation
and reconstruction errors when the FSA is implemented are
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Fig. 4. Double bar charts displaying the effect of changing n for a range of values of m on perturbation error. Best fit curves confirm the dependency n−5/3

from Theorem 5.1. The first bar originates from the authors’ FSA, and the second an otherwise identical baseline case with the DFT removed.

at least an order of magnitude smaller than the same errors
in the baseline case. The only exception is the perturbation
error when the number of (Fourier) coefficients is low, but
in that case the difference is not significant, especially com-
pared to the magnitude of the corresponding reconstruction
error.

In conclusion, these experiments confirm that picking t = 1
and k = 3 serves to minimize the error. The lines of best
fit confirm the dependencies on the other parameters from

Sections IV and V for m, d , ε and n, by implementing and
applying Algorithms 2, 3 and 4 to an ECG Heartbeat Catego-
rization Dataset in Python. The experiments demonstrate that
the MSE observed in practice is sufficiently small to allow
effective reconstruction of average vectors for a suitably large
cohort of users.

By comparing the implementation of our new Fourier
Summation Algorithm (FSA) with a suitable baseline,
we have demonstrated that our usage of the Discrete Fourier
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Fig. 5. Double bar charts comparing the relationship between the perturbation and reconstruction errors in the Fourier case for (a) the ECG Heartbeat
Categorization Dataset and (b) a synthetic dataset created in Python. Perturbation error is isolated in (c) and (d) so that the m8/3 dependency can be checked,
and for ease of comparison. The first bar originates from the authors’ FSA, and the second an otherwise identical baseline case with the DFT removed.

Transform (DFT) reduces all experimental errors significantly,
regardless of the settings of all other parameters.

VII. CONCLUSION

Our results extend a result from Balle et al. [3] for scalar
sums to provide a new protocol Pd,k,n,t in the Single-Message
Shuffle Model for the private summation of vector-valued
messages (�x1, . . . , �xn) ∈ ([0, 1]d)n . It is not surprising that the
normalized MSE of the resulting estimator has a dependence
on n−5/3, as this was the case for scalars, but the addition of a
new dimension d introduces a new dependency for the bound,
as well as the possibility of sampling t coordinates from
each d-dimensional vector. For this extension, we formally
defined the vector view as the knowledge of the analyzer upon
receiving the randomized vectors, and expressed it as a union
of overlapping scalar views. Through the use of advanced
composition results from Dwork et al. [11], we showed that the
estimator now has normalized MSE Oε,δ(d8/3tn−5/3) which
can be further improved to Oε,δ(d8/3n−5/3) by setting t = 1.

To further improve this bound, we adapted the method of
Rastogi et al. [7] to implement a Discrete Fourier Transform
(DFT). The purpose of this method was to compress each

of the d-dimensional vectors �xi to a highly representative
m-dimensional vector, where m � d , and then apply Pd,k,n,t

to m coefficients instead of d . Although some accuracy is
lost by transforming the vectors between the original and
Fourier domains, this is counteracted by the improvement in
the normalized MSE from a dependence on d8/3 to m8/3.

Our contributions have provided a stepping stone between
the summation of the scalar case discussed by Balle et al. [3]
and the linearization of more sophisticated structures such as
matrices and higher-dimensional tensors, both of which are
reliant on the functionality of the vector case. We have seen
via both theory (Section V) and experiments (Section VI) that
combining our new private summation protocol with a DFT
reduces the MSE significantly.

The work we have presented here may be elaborated in
further work. For example, a useful property of the Fourier
space is that a convolution in normal space is equivalent to
simple multiplication in Fourier space. Although this property
is typically used to improve speed, it could be explored as to
whether this might be leveraged to gain additional privacy.
Further, as mentioned in Section II, there is potential for
further exploration in the Multi-Message Shuffle Model to
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gain additional privacy, by utilizing methods presented by
Balle et al. [19].

APPENDIX

PROOF OF LEMMA 4.5

Lemma 4.5. Condition (2) holds.
Proof: The way in which we split the vector view (i.e.,

to consider a single uniformly sampled coordinate of each
vector-valued message in turn), means that we can apply a
proof that is analogous to the scalar-valued case [3]. We work
through the key steps needed.

Recall from Section IV-A that the case where the nth user
submits a uniformly random message independent of their
input satisfies DP trivially. Otherwise, the nth user submits
their true message, and we assume that analyzer removes
from �Y (αi j ) any truthful messages associated with the first
n − 1 users. Denote n

(αi j )

l to be the count of j th coordinates

remaining with a particular value l ∈ [k]. If �x (αi j )
n = θ and

�x ′(αi j )
n = φ, we obtain the relationship

Pr[View
(αi j )

M ( �D) = Vαi j ]
Pr[View

(αi j )

M ( �D′) = Vαi j ]
= n

(αi j )
θ

n
(αi j )
φ

.

We observe that the counts n
(αi j )
θ and n

(αi j )
φ follow the binomial

distributions Nθ ∼ Bin
(

s, γ
k

)
+ 1 and Nφ ∼ Bin

(
s, γ

k

)
respectively, where s denotes the number of times that the
coordinate j is sampled. In expectation, s = (n − 1)t/d , and
below we will show that it is close to its expectation:

Pr
Vαi j ∼View

(αi j )

M ( �D)

⎡⎣ Pr[View
(αi j )

M ( �D) = Vαi j ]
Pr[View

(αi j )

M ( �D′) = Vαi j ]
≥ eε′

⎤⎦
= Pr

[
Nθ

Nφ
≥ eε′

]
.

We define c := E[Nφ] = γ
k · s and split this into the union

of two events, Nθ ≥ ceε′/2 and Nφ ≤ ce−ε′/2. Applying a
Chernoff bound gives:

Pr
[

Nθ

Nφ
≥ eε′

]
≤ exp

(
− c

3

(
eε′/2 − 1− 1

c

)2
)

+ exp

(
− c

2

(
1− e−ε′/2

)2
)

.

We will choose c ≥ 14
ε′2 log(2t/δ) so that we have:

exp(ε′/2)− 1− 1

c
≥ ε′

2
+ ε′2

8
− ε′2

14 log(2t/δ)
≥ ε′

2
.

Using ε′ < 1, we have:
(1− exp(−ε′/2)) ≥ (1− exp(−1/2))ε′ ≥ ε′√

7
.

Thus we have:
Pr
[

Nθ

Nφ
≥ eε′

]
≤ exp

(
− c

3
(ε′/2)2

)
+ exp

(
− c

2
(ε′/
√

7)2
)

≤ 2 exp

(
− 14

2ε′2
ε′2

7
log(2t/δ)

)
≤ δ/t .

We now apply another Chernoff bound to show that s ≤
2E[s], which can be used to give a bound on γ . The following
calculation proves that Pr[s ≥ 2E(s)] ≤ exp(−E(s)/3), using
E(s) = (n − 1)t/d:

Pr[s ≥ 2E(s)] ≤ exp
(
− n − 1

3
t/d

)
≤ exp

(
− n

3

)
< δ/3t,

for all reasonable values of δ.
Substituting these bounds on s and c into γ s/k = c along

with ε′ = ε

2
√

2t log(1/δ)
gives:

γ ≥ 112kt log(1/δ) log(2t/δ)
sε2 ≥ 56dk log(1/δ) log(2t/δ)

(n−1)ε2 .
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