
New Algorithms for Differential Privacy
Mary Scott (University of Warwick), supervised by Graham Cormode and Carsten Maple

Modern data analysis relies on gathering data from
individuals that is considered highly sensitive – for
example their medical history. There is a pressing need
to develop trustworthy systems that limit the exposure
of this sensitive information. One possible approach
to this problem is to allow data disclosure whilst
protecting privacy via anonymisation. A more rigorous
notion of privacy introduced in 2006 is Differential
Privacy (DP), which guarantees that the output of a
computation on a dataset is not changed significantly
upon the removal of any individual from that dataset.
Local Differential Privacy (LDP), a model of DP with an
additional restriction, is used by hundreds of millions
of people every day. My future research will focus
on extending the recently developed Single-Message
Shuffle Model (SMSM).

Figure 1: Linking to re-identify data.

Background
Last summer, I completed an internship exploring the
issue of linkage, which occurs when an adversary finds
two datasets with sufficient common information about
the same people that they can be merged. Refer to
Figure 1 for an example.

I primarily studied KHyperLogLog (KHLL), an algorithm
that could estimate the re-identifiability (the probability
of recovering the identities of people) and the joinability
(the probability of finding common datasets were
linkable by unexpected join keys) risks of very large
databases.

Figure 2: Re-identifiability graphs for K = 100.

I wrote a program in Python for KHLL that satisfied
linearity and required minimal memory, concluding that
the risk of linkage decreased as the random sample
size K increased, and increased as the intersection I
increased. See Figure 2 for an example output of my
program.

My research on KHLL relied on anonymising datasets,
to allow data disclosure without violating privacy. I
have now moved on to a different approach: to actually
control the disclosure of data.

“Differential Privacy formally defines
what it means for a computation to be
privacy-preserving”

Narayanan and Shmatikov
The researchers who de-ano-
nymised theNetflix Prize dataset

The ε-Differential Privacy Guarantee
One of the fundamental challenges of data analysis is
the careful balance of acquiring as much utility from
a dataset as possible, whilst simultaneously providing
a strong guarantee of privacy to each individual
affected.

A function applied to a dataset is differentially private
(DP) if, with the removal of any individual from the
dataset, the output of the function does not change
more than a small multiplicative factor ε .

Definition [1]: A randomised function M gives
ε-differential privacy if for all datasetsD1 andD2 differing
on at most one element, and all S ⊆ Range(M),

Pr[M(D1) ∈ S]≤ exp(ε)×Pr[M(D2) ∈ S].

Randomised Response
Imagine an organisation is collecting data about the
voting habits of a sample of students studying at the
University of Warwick. If a representative were to directly
ask each participant “Did you vote for party P in the last
general election?” then this violates their privacy.

In randomised response, participants report whether or
not they voted for a party P by flipping a coin:

• If the coin lands tails, then they respond truthfully;

• If the coin lands heads, then they flip a second coin and
respond “Yes” if heads and “No” if tails.

To estimate the true fraction p of participants who voted
for party P, start by calculating the expected number E
of “Yes” answers as seen in [2]:
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Then rearrange the expression above to estimate p as
2E − 1

2. Randomised Response can be linked to DP: the
parameter ε can be expressed as a function of p.

Figure 3: A user’s phone personalises the model locally,
based on their usage (A). Many users’ updates are
aggregated (B) to form a consensus change (C) to the
shared model, after which the procedure is repeated.

Local Differential Privacy
A more recent development is Local Differential Privacy
(LDP), which requires that the output of every user meets
the ε-differential privacy guarantee. This guarantee is
fulfilled at the local stage, rather than after the data
is collected, meaning that the personal information of
every user remains private even from data analysts. See
Figure 3 for a visual explanation.

LDP is a superior form of privacy as it does not require a
trusted third party. It has been deployed at large scale in
several of the world’s most popular companies, including
Google [3] and Apple [4].

Apple’s LDP implementation used the Count Mean
Sketch to collect emoji usage data, with results shown
in Figure 4. This helped the company design better
ways for their consumers to find and use their favourite
emojis.

Note that Randomised Response gives an LDP
result: the mechanism protects the privacy of any
specific participant, irrespective of any attacker’s prior
knowledge.

Figure 4: The most popular emojis for Apple customers,
collected using Local Differential Privacy.

The Single-Message Shuffle Model
In the Single-Message Shuffle Model (SMSM), the data
collector receives one message from each of the users
as in LDP. The crucial difference is that SMSM assumes
the data collector is unable to associate messages to
users.

SMSM differs significantly from LDP in terms of assumed
trust: SMSM requires users to provide messages
carefully crafted to protect each other’s privacy, as well
as relying on a trusted shuffling step. This is in contrast
with DP where the responsibility is entirely held by the
trusted curator.

In [5], Balle developed a single-message shuffle protocol
for the private summation of (real) numbers xi ∈ [0,1].
I plan to extend his argument to include the private
summation of vectors.
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